Simulation of Patient-Specific Deformable Ultrasound Imaging in Real Time

نویسندگان

  • Mafalda Camara
  • Erik Mayer
  • Ara Darzi
  • Philip Pratt
چکیده

Intraoperative ultrasound is an imaging modality frequently used to provide delineation of tissue boundaries. This paper proposes a simulation platform that enables rehearsal of patient-specific deformable ultrasound scanning in real-time, using preoperative CT as the data source. The simulation platform was implemented within the GPUaccelerated NVIDIA FleX position-based dynamics framework. The high-resolution particle model is used to deform both surface and volume meshes. The latter is used to compute the barycentric coordinates of each simulated ultrasound image pixel in the surrounding volume, which is then mapped back to the original undeformed CT volume. To validate the computation of simulated ultrasound images, a kidney phantom with an embedded tumour was CT-scanned in the rest position and at five different levels of probe-induced deformation. Measures of normalised cross-correlation and similarity between features were adopted to compare pairs of simulated and ground truth images. The accurate results demonstrate the potential of this approach for clinical translation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-48: Ultrasound Deformable Model for Virtual Surgery Simulation of Oocyte Retrieval in Infertility Programs

Background The use of a medical simulator should enhance the goals of minimally invasive surgery: patient safety, cosmesis, shortening the length of hospital admissions, and reducing cost. Using an innovative approach to the handling of ultrasound images in virtual reality simulation, this article describes a process that employs a hybrid model of deformable models that can be applied in the te...

متن کامل

O-39: Ultrasound Deformable Model for Virtual Surgery Simulation of Oocyte Retrieval in Infertility Programs

Background The use of a medical simulator should enhance the goals of minimally invasive surgery: patient safety, cosmesis, shortening the length of hospital admissions, and reducing cost. Using an innovative approach to the handling of ultrasound images in virtual reality simulation, this article describes a process that employs a hybrid model of deformable models that can be applied in the te...

متن کامل

Thorax organ dose estimation in computed tomography based on patient CT data using Monte Carlo simulation

Background:  This study presents patient specific and organ dose estimation in computed tomography (CT) imaging of thorax directly from patient CT image using Monte Carlo simulation.  Patient's CT image is considered as the patient specific phantom and the best representative of patient physical index in order to calculate specific organ dose. Materials and Methods: EGSnrc /BEAMnr...

متن کامل

Simulation of a Neutron Detector for Real Time Imaging Applications

Monte Carlo Method is used to simulate a double layer gadolinium-amorphous silicon thermal neutron detector. The detector fabricated in pixel array configuration has various applications including neutron imaging. According to the simulation results, a detector consisting of a gadolinium (Gd) film with thickness of 2-4 ~m, sandwiched properly with two layers of sufficiently thick (-30 ?µm) hydr...

متن کامل

Real-Time Ultrasoundsimulation for Medical Training

This thesis presents a real-time capable GPU-based ultrasound simulator suitable for medical education. Two different models are presented in the following. A 2D version has been implemented in order to simulate IVUS without modelling complex 3D geometry and a 3D version which is able to synthesize realistic looking ultrasound images in real-time. This includes ultrasound specific artifacts, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017